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First works on the motion of an Earth's satellite utilized the classical per-
turbation theory of the elliptical elements of the orbit. The gravitational
force potential contalned the first nontrivial term of the potential expan-
sion 1n spherical functions' [1 and 2]. The additional terms were taken into
account in [3 and 4]. A new qualitative effect was discovered which does not
appear in the first approximatlion. Another direction 1s connected with the
approximate representation of the Earth's potential by an expression which
ermits the separation of variables in the Jacobl-Hamilton equations [5 to

].[ A great deal of attention is devoted to the problem of satellite motion
in (9].

The present paper derives new equations of motion, the form of which 1s
suitable for application of averaging and the small parameter methods.
Utilization of spherical coordinates leads to lowering of the equations'
order. Study of the orbital elements 1s relegated to second place. Consi-
dered are the simplest forms of motion. Use of paper [10] 1s made in derlv-
ing the equations of motion (¥*).

1. Introductory notation. We introduce a fixed system of coordinates
O0x y z with origin at the Earth's center and unit vectors i,, 1,, i,
The z-axls 1s the axis of Earth's rotatlon and 1s directed towards the
North Pole. The spherical system of coordinates r, ¥, A 1s introduced

z = rsin ¢ cos A, y = rsin ¥ sin A, z = rcos ¢ (1.1)

The coordinate set of the spherical system of coordinates is glven by the
unit vectors e,, €g, €). The Earth's mass distributlon 1s assumed such that
the gravitationsl fleld potential does not contain X\ and is an even func-

tion of 9 (y = cos ﬁ). The latter assumption 1s not essentlal for the
greatest part of the paper.

*) A.I. Lur'e. Certain nonlinear problems of the dynamic of space flight.
Presentation. Nonlinear Problems of Space Flight. Third Conference on Non-
linear Oscillations. Berlin, 1964,
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The materlal point ¥ of unit mass (satellite) moves only due to the
action of the Earth's gravitational forces; the influence of the atmosphere,
the Moon, the Sun, etc. 1is neglected.

Let r Dbe the radius vector of point ¥ . We introduce the orbital set
€r, €3, N. Vector e, 1s parallel and codirectional with the vector r,
r = e,r. Vector n 1s perpendicular to the vectors ©p , dr/at and 1s codi-
rectional with »r X dr/at . Vector e, 1s deflned by the equality

e, =n X e,

2, The initial equations of motion...The equations of motion for the
point ¥ are of the form

d?r / di? = — grad II (2.1)
Let us introduce into consideration the angular momentum
k =r X dr/dt, |k| = %, = nk (2.2)
By dot multiplication by e, Equation (2.1) 1is transformed into
d?r Je2 ol
e (2-3)
It follows from (2.1) and (2.2) that
dk /dt = —r X grad Il (2.4)

Substituting r = rey into (2.2) and multiplying vectorially by e, the
equation for e, 1s obtalned

dey / dt = r %n X e, (2.9)

Substituting k == kn, r == re, into (2.4) and dot multiplying by p the
followling equation is obtained

dk | dt = — re,-grad II (e, =1 X €) (2.6)
Multiplying Equation (2.4%) twice vectorlally by n there results
d
J;‘l = — %(n-grad IHe X n (2.7)
Introduce the vector
©, = kr*n — rk™! (n-grad Il) e, (2.8)
Equations (2.5),(2.7) can be rewritten into the form
de, dn
o = 01 Xey, 7= ® XD (2.9)

i.e. the vector w, is the angular velcocity vector of the orbital set e, e,
n.

Equations (2.9), (2.3) and (2.5) form a complete system of equations of
motion of ninth order [10] with the three known relationships

e, e, =1, e, -n =0, n-n=1 (2.10)

3. FMrst form of the equations of motion. We introduce the angular velo-

clty vector w, of the set e, ey, € of the spherical system of coordi-
nates

w0, = i\ + e, (" = dAjdt) 3.1)
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We will denote by yx an angle formed by the instantaneous orbital plane
contalning r and r',and the meridianal plane containing i, and »r . The

sets €y, €,, 1 and e, €y, €) have in common the vector e,. . Their angular
velocltles w, and w, can differ only by the terms e,¥, i.e.

k r . . .

&0 — 3 (n-grad ) e, = Aiy + ¥'ey + x'ep (3.2)

Projecting the equality (3.2) on e,, €y, €, there results the scalar
equalities

— —;—n grad IT = A cos & + o
k. . . k .
— Fsiny = — A’ sin G, gcosy =& (3.3)
We introduce a new independent variable r and a dependent variable 1y
in accordance with dt = kr-%dt = ku?dt, u = rl (3.4)

In the problem of Keplerian motion, the angle of true anomaly corresponds
to the nonholonomic variable +t . Differentiation with respect to -+ will
be denoted by a prime. From (3.3) we have

X =Q —Acos¥ A'sin® =siny, ¥ =cosy (3.5)

Here 1s introduced the notation

e I )i 1 610
Q-———Fmgradrl_——ﬁn-(aTer—}-T%ew)=
r2 oI1 1 JIl . .
= T g% T spsink (3.6)
Let us Introduce a new variable
1 = cos ¢ (3.7

Differentiating y with respect to r , we find on the strength of
(3.5) and (3.6)

v = — sin ¥ cos 7, ' 1 — v — 72 = sin*®sin g
" = — cos ¢ + sin ¥ sin yQ = — -}—sinzﬁsinzx——}——?—l-I (3.8)
T = —cos xS == Fadsing 96 . O)
The differential equation for y follows from (3.8)
. ) o 4 Ol
V+r=—0—-7—1)nms 6=k (3.9}
In Equation (2.3), we substitute {3.4) and obtain
” _ o 8m 4,
From (2.6) and (3.%) we find
, dk? r2 oIl .
B =TT = — 2r%,-grad Il = — 272 5%cos x (3.11)
From (3.7) and (3.8) we finally obtain
N LI | PR _ _29m,,
h = 55T 3% sin® cos y = — i ¥ (3.12)
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Equations (3.12) and (3.9) have an integral which expresses the constancy
of the proJection of angular momentum on the z-axis.

h(l—1*—qY) =0 (6 = const) (3.13)

Eliminating & from (3.9) and (3.10) with the aid of (3.12) and (3.13)
we get

" 1—12—7y2 (3l 1911 , ,
“+”=“—c—(5;—mﬁ )
" 1 rang 011
T+r=—Gml—7r—15 (3.14)

These equations admit the energy integral
o4+ u?)=2E—-I)(1 — 12— 1" (E = const) (3.15)
Eliminating the independent variable «r (this can be done with the aid of
the principle of least action in the Jacobi form ([11] p.712), there results

one equation of second order. This, apparently, does not facilitate the
investigation.

The present section derived in greater detail Equations (3.14) as suggested
by Lur'e in the Presentation.noted previously.

4., 8eoond form of the equations of motion. Eguation (2.6) can be trans-
formed into Ik on 1 oI oIl
= — — — = = i — 4.1
T re, X (ar e, + - 6ﬁeg) e, sin & oy (4.1)
In Equations (4.1), (2.5) and (2.3), we pass to the new independent vari-
able ¢ and dependent variable vy

dy = r3dt = u®dt, u=rl (4.2)
We obtain Equations
dk _ sin® "M de, _ i3
o @ ey v dq)—kxer (4.3)
d2u oIl i
W_*—hu:—é;’ h=k? (4.4)

Let us express the vectors k , e, by the projections on the fixed axes
of the rectangular coordirates x, y, =z

k = kjij + kyi, + ks, e, = 73i; + 1.1 + i3 (4.5)
7. = sin ¥ cos A, 7, = sin ¥ sin A, v = cos &
Substituting (4.5) into (4.3), we get the scalar equations
b moll ok _qoll]  dky_ (4.6)
dog ut oy do u? oy de
d d d
diq: = kot — ka¥y, "TT(PE = k3, — k7, dT:‘, = kit — ko (4.7)

The eighth order system consisting of Equations (4.4), (4.6) and (4.7)
describes the motion of the pnint y . There are known two obvious relation-
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ships
W= nk Tk, otk =0 (4-8)
Differentiating (4.7) with respect to ¢ we find on the strength of (4.6)
to (4.8)
d2T1 T oIl _ d?“rz Y oIl -
b e 1 L )
dcpz T by = (72— 1) u? g_g ho=lht+ k24 k2 (4.10)

Differentliating x» with respect to v , we get on the strength of (4.6)
and (4.
(+.7) dh 2 911 dy .
— = S (4.11)
do ut oy do
Equations (4.4), (4.10) and (4.11) represent a complete systcm of f1fth
order; the order can be reduced to second utilizing the "autonomy” and two

known integrals corresponding to (3.13) and (3.15)

h(1 — Tg) — (3—:})2 =a (s = const)

d
(d$) + hut =2 ((E —1I) (E = const) (4.12)
By replacing the variable ¢ by T (dtv = Pfﬁtbp) we can pass from Equa-
tions (4.4), (4.10) and (%.11) to Equations (3.9) to (3.11). We can utilize

the symbollic formula for y and y

@ . @  1olldrd )

Rl = R ¥ T TF (4.13)
If the independent variable y, 1s used, then we will find
d du\2
Te=sel—2+q—23  (=(%))

dy\3 __ . ,

q(E{[) ——0—3(1—7)(2H—2E+q) (E, s = const) (4.14)

The system of second order (4.14) is complete. It 1s suitable for study-
ing the sections of the %rajectories wilth monotonously varying radius r .

5.. On Lagrange's equations. In the Lagrange's equations of second
order ([11] p 28§) the independent variable ¢ 1s assumed to be time. Let
g, (s 1,.. be the generalized coordinates, T the kinetlc energy

T Z Apm (Qn - 0 0) 29, 5.1)
k, m=1

The dot denotes differentiation with respect to time. Let us introduce
a new independent variable ¢ 1in accordance with

dp=38(q1, . .., 0,) dt (5.2)

Differentiation with respect to @ 1in the present and the following Sec-
tlon will be denoted by a prime. Let

T, -—7 Z Ap @11 -+ 1 82) 969 (5.3)
k, m=1

It can be proved that the equations of motlion are of the form



270 K.G. Valeev ard A.I. Lur'e

(3
e~

LR AN .
dq,( aq;)"‘szaq,*‘Q- (s=1,...,n) (5.4)

Here @, 1s the generalized force corresponding to the coordinate g,

6. A different derivation of the equations of motion. Equations (5.4)
can be utilized for a shorter but less descriptive derivatlion of Equations
(4.4), (4.10) and (4.11) and consequently (3.14). The kinetlc energy of the
point ¥ 1in the spherical system of coordinates 1s

T =1/, [r'? 4 r202 - r? sin? 9A2) (6.1)
Assuming in (6.1)
r=u1l, cosd =7 6.2)
we find for T, (5.3)
1 (y? 12 =,
T*=T<F+u2(1—~rz)+ " 7‘2) (6.3)

Let us introduce the independent variable o

dop —=u?dt (6.4)

Differentiation with respect to ¢ will be denoted by a prime. Equations
(5.4) then become

d u u'? uy'? ! oIl .
“g P2 o p e =M = oy (6-5)
d _v YEut " _en
u? dp T — ¢ (I— 1) - TARuE = a7 (6.6)
d
wgg M —19) =0 (6.7)

Let us introduce an auxiliary quantity
Byt (L 2t (L — 1) A (6.8)
After elementary transformations, Equation (6.5) becomes (4.4), while

Equation (6.6) becomes 2& 10; Differentiating » (6.8) with respect to o
there obtains Equation (4.11) in view of (6.7).

7. Third form of the equations of motion. In Eguations (3.9), (3.10)
and (3.12), the following substitution is made:

hu h du
w:T —1, z‘:—-—}’i—m‘ (n= const) 7.1)
The equations for y» and v are of the form
dw 2 oM dy de (g L0, 4Oy du
T Ty ¢ttt ww) tepg ey e (72

Assuming that the potentlal energy is
= — pu + pll,, | T, [<€u < uo (7.3)

and eliminating u and gJu/dr with the aid of (7.1), we obtain the equations
of motion

dw 2p oI, ay dv oIl vp O, dry

=" V" T1tw oy dv’ 7t =Vt oy — U twp oy a&x (9
dp. 2p?  8Il, dy ok _
dt — (I Fw? oy dt (”_ T) (7.5)
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dy P [, ., (dr\ejem,
drz+7=—m[1—7‘— (d—r)]a—y (7.6)
We assume, that after differentiating I, , the variable y 1s substi-
tuted by
u=(1-4w)p? (1.7)

Letting II,=0 in Equations (7.4) to (7.6), then, they have the obvious
solution

p = const, w= e cos (T — T1),
v =esin (v —11), 7 =mgin (v — 13} (7.8)
which corresponds to the Keplerlian motion
r=ul=p(+ecos(t—m))? (1.9)
The orbital inclination angle ¢ is found from the equality
sini=m (7.10)
Therefore, the varlable p can be regarded as a focal parameter, while
the quantity
e =u? | v? (7.11)

as the square of eccentrlclty of the osculating ellipse.
Equations (7.4) to (7.6) are convenient for investigating near cilrcular

orbit(:s. %‘hey have two integrals which correspond to the integrals (3.13)
and (3.15

Pl — 2 — (@y/dr)t] = 1 (c1 = const) (7.12)
w42 =1 — 2p (g -+ I1,) (ca = const) (7.13)

If ¢ 1is the orbital inclination angle of the osculating ellipse, then
it follows from (3.8) that

cos? i = (igen)? = sin? y sin? & = 1 — 12 — (dy/dv)? (7.14)

The integrals (7.12) and (7.13) can be rewrlitten in the form
peosti=a, 1 —et=2p(ca+ II,) (7.15)
If the focal parameter P of the orblt is essentlally constant, then the

orbital inclination angle ¢ and the eccentricity e of the osculating
ellipse are nearly constant.

Note . From (7.15) follows the inequality
2 In
0< cost i = L(ic’—_’te—rﬂgi (7.16)

If the quantity I, during motlon satisfies the condition
1T, — Il | 6, ITp = const (7.47)

then from the integrals (7.15) and (7.16) follow the bounds of the satellite
trajectory with initlal values of the parameters o, €5, g

0Ten<H, 0 <o <1om, 0<ro<C o0 (7.18)
During the entire motion the following inequallties are satisfled:
<1 — (1 —e?)cos?iy (1 —e— 2red) g1 + e+ 2rd)? (7.19)
1> cos?i > cos? iy (1 — e?) (1 — e — 2reB) (1 + € -+ 2ro8)~2 (7.20)
1—e 14e

T (o 4 4ra0) ST ST T 4rd) (7.21)
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Condition (7.16) must be fulfilled with (7.20) and (7.21). For*the Earth
the quantity & 1s evaluated as

§=1.3.10710 41 (7.22)
During the motion, the satellite 1s within a certain toroildal body whose
axls of symmetry coincides with the polar axis (z-axis).

The rough estimates (7.19) to (7.21) can be substantilally improved for
near-equatorial orbits.

8. Paeudo-periocdioc trajectories of the satellite, We will refer to a
satellite trajectory as pseudo-periodic 1if 1t corresponds to a periodic solu-
tlon of the system of eguatlons (3.14%) or (4.%), (%.10), (4.11), or (7.4) to
(7.6). Let us consider a periodic solution of the system (3.14) with the
perlod close to 2n . We will investligate the segments of the corresponding
pseudo-periodic trajectory enclosed by the sequential crossings of the equa-
torial plane from south to north. By assumptlon, the expression for the
potentlal energy is independent of A . Therefore, all segments of the tra-
Jectory are ldentical. They coincide exactly for a definite rotation about
the z-axis. The pseudo-periodlc trajectories are simplest in the motion of
the satellite., We will find the necessary conditions for the cxlstence of
the pseudo-perlodic trajectory. Let the potential energy in the gravita-
tional fleld be of the form

I (u, 1) = — pu — - u’ (1 — 37%) — iV W5 (3 — 3094357 ... (8.1)

Here ¢ 1s a small parameter, and the quantities pu, ¢, v are known
(see, for example, (9 and 12], pp.75 and 77). In order to find the perilodic
solutions, we will utilize the system of equations (4.4), (4.10), (4.11)
which for (8.1) becomes

d*uw [ do + hu = p 4 eu® (1 — 3¢?) + e?vut (3 — 3077 -+ 3574 + . ..
d*y / dg? + hy = (v* — 1) [2euy + e*vu® (127 — 28¢%)] 4+ ... (8.2)
dh /[ dp = — 2 [2eut + e?vu® (127 — 28¢%)) dy /dop +- . ..

The instant of the satellite intersection of the equatorial plane will be
taken as the initlal time when y = O, » = A, . We introduce new parameters
and variables

= gphy?, Vi = @V, z = uhou™t
s =0 [hy (1+ auf + af® + .. )" q = hhy (8.3)
We seek a periodic solution as a serles in powers of g [13]
z2=2y+ Bz, + P24+ ..., T=v+Brs+B+ ...
q=gqo+Bg, + P+ ... (8.4)
For the terms in (8.4) we find Equatilons

d?z az d
Zrta=1 G 41=0 -0 (8.5)
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The first approximation equations become

d? a2
21 42z + % Fa zo + q120 = 2> (1 —3710%)
4 &
d:’;_ + 71+ ‘di‘;‘ + @170 = 224 (Yo — 7o) (8.6)
d d
—gz—l = 4Zo']’o To

The second ai)proximation equations are
d;:: T = -y d;:; — % %’3— — @121 — 2% — B62%7,1; +
4 22z) (1 — 37¢%) + v12,* (3 — 307,2 + 357,
Tt r=—a o, Bl — g + (8.7)
+ 22071 (870" — 1) + 221 (10° — ¥o) + v12® (— 287,° + 407,* — 127,)

d92

d
a5 — 4z oTo— ’—420'1’1 4leo To

—2v1z03 (127, — 287, d;;

The generating solution will be assumed

=14 ecos (s — s), Yo = m 8in s, go =1 (8.8)
From the last equation in (8.6), we find
g1 = m? [cos 25 4 Yge cos (3s — s;) + e cos (s + sp)] (8.9)
The conditlons of periodicicty for &,, y, lead to the equalities
e(a + 2 —3m? =0, m(a; + 2m? —2) =0 (8.10)

They can be satlisfied in three cases.

1. For e = 0 . The generating orbit is circular.

2, For m = 0, The generating orbit lies in the equatorial plane. In
this case, Equations (8.2) can be integrated ,

3. For 5m®— 4 = 0 . The generating orblt has an angle of inclination

i = st (0.2)'5) ~63°28'
In satisfying (8.10), we find 2z, and vy,
1= (1 4 Ye®) (1 — 3/,m®) — Ygm?? cos2sy, — Y/3gm® (6 + €2) cos 2s —
— Y,4% (2 — 3m?) cos (25 — 2sp) — Y/,;;m? e cos (3s — 5,) —
— Y ,m2e® cos (45 — 2sp) (8.11)
1, = Yyme (5m? — 4)sin s, — Yggme (11m? — 12) sin (2s — s5) +
-+ Y,m% sin (25 + s,) + 'g/m® sin 3s 4 YggmPe sin (4s — s)  (8.12)

Following Sections conslder the conditions for which there exists a peri-
odic solution of the system (8.7).
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9. The generating orbit with an angle of inolination of 63°28', Assuming
that O0< e< 1 and 5m°= 14 we find 4,

gy = p5e® (5 — 18v)) ssin 255 + . . . (9.1)

Dots indicate perlodic terms. From data in [12] (p.77) we find the value of
v, = 0.562, It follows from (9.1) that the generating elliptic orbit for a
bpseudo-perlodic trajectory must have the perigee and apogee located either
in the equatorial plane or at the most northern or southern points. At the

same tlme sin 2s, = 0 (9.2)
Assuming that in (8.8) ¢ = O, we find the pe~iodicity conditions for
[+]
Z2,Y2 88
erre € [oty — *o5 — 173/ y506% + vy (o5 — ¥/5e?)] = 0 9.3)
Oy — Mfos + /4508 + vy (Bg5 — ¥y5€%) = 0 (9.4)

Conditions (9.3) and (9.4) cannot be fulfilled if e # O . After elimi-
nating o, and substituting v, , there results the impracticable condition

0.38 + 1.83¢2 = 0 (9.5)
Assuming that in (8.8) g,= 0.5n , we find the perilodicity conditions for
T el Yy — Wt vy (Y + 6] = 0 9.6)
— Gy ¥lay 4 M gee® + v, (— 2y — 3e?) = 0 (9.7)

After elimlneting o, and substituting vy » there results the impracti-
cable condition 2.03 + 2.91e2 = 0 (9.8)

The cases for Sy,=nm , go= 1.57 are obtained from the considered cases
by replacement of ¢ by — e .

The final result shows that the pseudo-periodic trajectories cannot exist
if the generating elliptic orbit has an inclination angle ¢ = 63°28’ and
eccentriclty e > O .

10, The ocase of a oiroular generating orbit. It will be shown that in
this case, there exists an entire famlly of pseudo-periodic trajectories of
a satellite, 1.e. a famlly of perlodic solutions for the system (8.2). Let
us assume that the potential energy is of the form

O (u, 1) = — pu — eudll; (2, 7% &) (10.1)

where e 1s a small parameter I, (uz, ys, e) 1s a power serles of all vari-
ables which 1s eonvergent for

Iul<u'101 l7l<1y |8[<81 (102)

Equations (4.4), (4.10) and (%4.11) become

a2 Al (u?, 712, &)
c—iTQ—l:+ hu = p  3euw?lly (u?, 1%, €) + 2eut ——%ﬁﬁ—— (h >0
day oIl, (u?, Y%, €) dh tﬁl (% 1% @) f_I_T_ .
‘7&)—2—F hy = 2e (1 —1?%) S Bl T = 2eu I dq (10.3)
Let for o=¢9, we have y =0, Ah=h, . Performing the change of the inde~-

pendent varilable
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s= [(he(1 + ;8 4 aget+ . . )" (@ — o) (10.4)
We seek & perliodic solution of system (10.3) in the form of series
u=uyt+ ey +etupb ..., T=T+en+ et
h = hg(go+ 8g, + e¥gs* ¥ ...) (10.5)

From (10.3), we find the generating solution which corresponds to the
circular orbit of the satellite

up = pho7l, To= msin s (m = oconst, m == 0), =1 (106)
Let us introduce the classes of trigonometric polynomials (convergent
serles) of the type

C, = Z} 8,y €08 (20 < 1) 5, Cy= g @40, COS 2n8 (10.7)

Sy = Nb,8inCn ¢ N)s Sy = X by, sin 2ns
n n

The classes of functions (10.7) form a commutative subgroup with a multi-
plication law for which the product given by the table
Ci C S 5
Ci Cr C S &
C: Ci Co & & (10.8)
S1 Sg S; Cl Cl
S. S]_ Sz cl Cl
yields equalities, for example (,S;= S,; these equalities are regarded in
the following sense. For any trigonone%ric polynomials ¥ (s), X.:(') such that

%1 €ECy, %3 €81, their product X;Xas € S;. Analogous interprefation is given
by the symbollc equalities

dC, dC, _ &C,
= Su 5 = Su § Syds = Cy, d,,—c,,...

We introduce the functions #,(u, v, €)

all, (u*, 10, €) 7 1
Oy (w10 0) = [+ Beull 42, 1, ) + 20t TR0 ]

ho
ol, (b, 1, ) 1

O, me)=20 -1 (a7 3 (10.9)
o1, (us, 18, I |
(ba (uy Ys 8) = 2&]‘ '_I—(H—a,ﬂ_ti)‘a—g:"—‘:

Let us prove now that the functions wu,, v,, g, can always be selected by
the periodic functions g such that

u,-ECg. ’rjES,, qu Cy (=0, 1,2,...) (10.10)

Equation (10.10) follows from (10.6) when g =0 .
Let (10.10) be fulfilled for (y = 0, 1,..., n—1). Introduce the notation

n—1 n—1 n—1
=Nl me= Ny et = ey (10.41)
=0 j=o =0

From {10.8) to (10.10) follow the relationships
@y (u,* 1, &) ECy D, (1.2, T.* &) E Sy, D, (u,* T,* &) €8y (10.12)
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Differentiation of @.(y,*, 7,* &) with respect to e does not alter
the class of the function.

Differential equations for wu,, T, G, are

n—1
d?u d2u; 1 ™D, (u *, 7, *, &)
n . j 1\ n s A
dst +ouy= — 2 (an—i ds2 + In-j U’J’)+ al Py (10.13)
i=0 & e=0
\ n—1 n—1
o, RN 1 9"Ps (%, 1% €)
o I, =— E Ay g P Z 9n-jTj-1 — a,msin s -+ T et
j=1 §=-0 € c=0
dgn 1 97D, (w *, 1,* &)
e n A n b4
ds Tl T T, (10.14)

It follows from (10.12) that the right-hand side in Equation (10.13)
belongs to the §, class, and consequently anECQ. The right-hand side of
(10.14) belongs to the 5, class. Consldering the constants q;,..., a;.,
known, we select g, such that the right-hand side does not contain the term
with sin g 1n its Fourler expansion. For m # O {(m = sin t) the constant
a, 1s selected uniquely. The function vy, can always be selected belonging
to class S§; . The selection will be unique 1f v, does not contain sing
in 1ts expansion. The right-hand side of Equation (10.13) belongs to the
class (, , and therefore, the functlon wu_, can always be uniquely selected
such tha% unEE(jr The valldity of the rela%ionships (10.10) is proved for
all n . If an auxiliary condition 1is applied

7,=0, s =0, (n=1,2 ... (10.15)

then the selectlon of the functions wu,, y,, ¢, Will be unique.

With the above indicated selection of the functions, we can prove the
convergence of the series (10.4), (10.5) if A, 1s sufficlently large and
€ > 0 1is sufficlently small. In investigating the convergence it is con-
venient to utilize the normalized space ([0, 2n] of the fuactions of s
continuous on the segment [0, 2] with the norm

Jul= max u(s)|, s & [0, 2n] (10.16)

The proof of convergence 1s 1rvolved and 1is not presented here. From the
piroof follows the existence of a famlily of periodlec solutions for the system
of equations (10.3) which depends on three arbitrary parameters h,, m,

Through each point of the space around the Earth passes one parametric
family of near circular pseudo-periodic trajectories.

11, The influence of the Eargh's pyriform shape. The generating orbit
with the inolination angle of 63°28/, The study of satelllte motlons proved
the existence of a third harmonic related to the pyriform shape of the Earth
[12] (p.75). Let the potentlal energy expression, different from (8.1), be
of the form

I (4, 1) = — pu — 1y &3 (1 — 3y2) — e2But (31 — 57%) —
— 1/ €2vub (3 — 3072 - 357%) + . . . 11.1)
Repeating the arguments of the Sectlons 8 and 9, we find the condition
ez = 0 , auxiliary to the conditions (9.3) ang (9.4&,8from the perilodicity

conditions for z, yz in the generating solution (8.8) with m = O.4/5 ,
8,= 0 .,

The case 8,= 0.5r 1s more interesting. Conditlons (9.6) and (9.7)
alter in form. After eliminating g, , there wesults the equality

2/15 + 21/45 e? + 3me§ho + Vi1 [— 93/25 - 632] = 0 (112)

Fulfillment of (11.2) is necessary for the existence of pseudo-perlodic
trajectories. From the data in [12) (p.79) the values of. the constants are
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v, = 0.40 4 0.02, Ehy = (0.45 + 0.05) pR-! (11.3)

Here p, 1is the focal parameter of the generating orbit, R 1is the radius
of the Ear%h. The orbit perigee must lie outside the Earth, and therefore,
the following inequality must be fulfilled

P> R (14 ¢) (11.4)
The equality (11.2) becomes
e —0.63en4 073 =0, N =pR1>0 (11.5)
The condition (11.4) becomes
4073 >(1-}¢063¢ (11.6)
and 1s always fulfilled. Condition (11.2) which is impracticable for g =0,
can be satlsfled by the cholce of or the selection of n in (11.6).

Since e3> 0, s,= 0.5m the generating orbit corresponding to (8.8) is
elongated to the south. Its pedigree i1s at the northermost point and apogec
at the southernmost point. The increase of the orbit size increases the
relative influence of the third harmonic in {11.1) compared to the fourth har-
monig.85The smallest value of the focal parameter p,x 2.TR 1s obtained for
e x U, .

Basilc conclusion . As a consequence of the Earth pyriform
shape, there can exlst pseudo-periodic trajectoriles (with accuracy uo to 2
for which the generating elliptic orbit has the angle of inclination 1= 63°28’
and which is elongated southward with perigee at the northernmost point. The
eccentricity and the focal parameter p, must be related by the approxi-
mate equality 111.5). The smaller the eccentricity e , the larger is the
focal parameter p,

12, The influence of the Earth's pyriform shape on the near circular
pseudo~periodic trajeotories. The proof of the possibility of constructing
pseudo-perlodic traiectories utilized in Section 10 is not usable for the
potential energy N{u, y) of the form (11.1). The presence of the third har-
monic(impg?es auxiliary conditions on the parameters of the generating solu-
tion (10.6).

From the periodicity condition for y,; there follows the equallty
4—5m*=0 (12.1)

ghg énclination angle of the generatlng orbit must be approximately equal
to 63°28!

Practical conclusion . The noncentral nature of the
Earth's gravitational field has the smallest influence upon near circular
satellite trajectorles with the inclination angle of 63°28‘.

BIBLIOGRAPHY

1. Okhotsimskii, D.E., Eneev, T.E. and Taratynova, G.P., Opredelenie vremenl
sushchestvovaniia iskusstvennogo sputnika Zemll 1 issledovanie veko-
vykh vozmushchenli ego orbity (Determination of lifetime for an arti-
ficial Earth satellite and investigation of secular perturbations of
its orbit). Usp.fiz.Nauk, Vol.63, N la (33), 1957.

2. Proskurin, V.F. aand Batrakov, Iu.V., Vozmushchenila pervogo poriadka v
dvizhenili iskusstvennykh sputnikov, vyzyvaemye szhatiem Zemll (Pertur-
bations of first order in the motion of artificlal satellites caused
by Earth's oblateness). Iskusst.Sputn.Zemli, W 3, 1959.

3. Strube, R.A., A rigorous theory of satelllite motion. Presentation at the
x-gn International Congress on Applied Mechanics in Stresa (Italy),
1960,



278

10,

11.

12.

13.

K.G. Valeev and A.I. Lur'e

Garfinkel, B., On the motion of a satellite of an oblate planet. Astr,
J., Vol.63, ® 1257, 1958.

Duboshin, G.N., Nebesnala mekhanika. Analitlicheskie i kachestvennye
metody (Celestial Mechanics. Analytical and Qualitative Methods) .
Izd."Nauka"., M., 1964,

Vinti, J.P., New method of solutions for unretarded satellite orbits.
J.Res.natn.Bur.Stand., ® 2, 63B, 1959,

Kislik, M.D., Dvizhenile iskusstvennogo sputnika v normal'nom gravitatsl-
onnom pole Zemli (Motion of an artificial satellite in the normal
gravitational field of the Earth). Iskusst.Sputn.Zemli, N 4, 1960,

Kislik, M.D., Analiz integralov dvizheniia iskusstvennogo sputnika v
normal 'nom gravitatsionnom pole Zemll (Analysis of the integrals of
motion of an artiflcial Earth satellite in the normal gravitational
field of the Earth). Iskusst.Sputn.Zemli, M 13, 1962,

Shtern, T., Vvedenie"v nebesnulu mekhaniku (Introduction to Celestial
Mechanics)., Izd."Mir", 1964,

Valeev, K.G., O nekotorykh sluchaiakh integriruemosti uravnenii dvizhe-
niia material'nol tochki pod deistviem n'iutonovoi sily 1 dopolnitel'-
nykh vozmushchalushchikh sil (On certain cases of integrability of
the equations of motion of a particle under the action of the Newton-
ian force and additional perturbation forces). PNN Vol.2T, M2, 1963,

Lur'e, Aég., Analiticheskala mekhanika (Analytical Mechanics). Fizmatgiz,
M., 1961.

Kosmicheskie traektorili (Space Trajectories). Biblioteka sb."Mekhanika",
Izd.inostr.Lit., M., 1903.

Malkin, I.G., Nekotorye zadachi teorii nelineinykh kolebanii (Certain
Proglems in the Theory of Nonlinear Oscillations). Gostekhizdat, M.,
1956.

Translated by V.A.C.



